

Probability \& Bridge

NKy Summer Getaway Sectional

August 12, 2017

Goals

- Practical bridge advice
- Improve how we think at the table
- Get better results in tough contracts
- NOT: combinatorial mathematics or statistical equations.

$$
\binom{N}{n}=\frac{N!}{n!(N-n)!}
$$

Simple Chances

- Flip a coin
- Roll a die
- Take a finesse

Flip a Coin

- Coin has two sides (2 Total cases)
- One side is up (1 Specific Case): Heads or Tails
- a priori probability $=$ specific $/$ TOTA $=1 / 2=50 \%$
- Each coin toss is INDEPENDENT of the prior event (Coins have no memories)
- Probability of success for both of 2 independent events is the product of the probability of each:
- Two coins giving heads (HH): $1 / 2 \times 1 / 2=25 \%$
-3 Coins giving Heads (HHH): 25% X $1 / 2=12.5 \%$ etc...

Coin Quiz

- Which sequence of 10 coin tosses is more likely?

Sequence A: HHHHHHHHHH 0.0977\% Sequence B: THTTHTHHHT 0.0977\%

Rolling a Die

- A standard die has 6 sides -6 Total cases
- One side shows up - 1 Specific Case.
- The roll of any one die each number has an equal probability of $1 / 6=16.67 \%$
- Each role is INDEPENDENT (die has no memory)
- Q: With two fair dice, what is the probability of rolling a 7 ?

Rolling a 7

－Outcome table（6x6＝36 Total Cases）\rightarrow
－Frequency Table：

$\cdot \cdot$	\cdot	\cdot	\cdot	－\because	－
－\cdot	Q．	\square	－ 0	\square	［1］
\odot	\odot	\odot	\bullet	\odot	8
88	88.	$8 \cdot 8$	18：	18%	8
88	$8 \cdot 8$	88	$88:$	888	8.
19，	田	目	成：	目	1

$\#$	2	3	4	5	6	7	8	9	10	11	12	Tot
Cases	1	2	3	4	5	6	5	4	3	2	1	26
$\%$	3.84	7.69	11.54	15.38	19.23	26.09	19.23	15.38	11.54	7.69	3.84	100

Rolling a 7 is 26.09%
Craps（2 or 12 ）is 7.69% ，the SUM of 2% and $12 \%(3.84+3.84)$ ．
For independent events，A and B is the product $P_{A} X P_{B}$ ，while A or B is the sum $P_{A}+P_{B}$

When is a finesse like a coin flip?

- When we lack INFORMATION!!! (a priori)
- 2 Cases: Win or lose finesse
- Just like coin: Heads or Tails
- Therefore Finesse is 50\%, lacking other information

Bridge Hands - BIG NUMBERS

- 635,013,559,600 - \# of ways to deal 13 cards.
- 53,644,737,765,488,792,839,237,440,000 the number of possible ways to deal all 52 cards, 13 at a time.
- Odds of 4 players being dealt all 13 cards in one suit:

1 in 2,235,197,406,895,366,368,301,559,999

Which Hand is More Likely?

- AKQJ1098765432
- AK32
- K984
- Q10
\& J107

The Trap?

What I gave
¢ AK32

- K984

Q10
\$ J107

What you saw: What you assumed:

- AKxx

- Kxxx

Q10
\$ J10x

SUIT SPLITS

- \# of specific cases / \# Total Cases (approximately)
- \# Total Cases $=2^{\mathrm{m}}$ (where $\mathrm{m}=\#$ missing cards)
- Study 2-7 missing cards (4-128 Tot. Cases)

Split		0	1	2	3
	7	0.5	7	30.5	62
	6	1.5	14.5	48	36
	5	4	28	68	
	4	10	50	40	
	3	22	78		
	2	48	52		

DROP Missing Honors

	\%	H	Hx	Hxx	TOT
		0.4	4	18	22.4
	7	1	9	27	37
	6	2.4	16	36	54.4
	5	6	27	41	74
	4	12	41	37	90
	3	26	52	22	100
	2	52	48		100

Suit Combinations

- How to play suits - wrong when done alone right when done in the context of whole hand.
- Know \# tricks needed.
- Vacant Spaces 13 each, reduced by information.

a priori Suit Combinations

1. K3 opposite 6710QA Do you finesse for the 10? Why/Not?
2. AJ975 -- K1086 - You play the K. LHO plays the 2 RHO the 3 . You play the 6 to dummy. LHO plays the 4. Finesse or drop?
3. AQ97 opposite K108 - You play the 10 to the Q and the 7 to the K, RHO playing 2,4. LHO playing 3,5 . Now you continue the 8 and LHO plays the 6 . Finesse or drop?
4. AJ1074 opposite $\mathbf{5 2}$ (need 3 tricks)
5. AKQ74 opposite 52 (need 4 tricks; Need 5 tricks) NO SIDE ENTRIES.

Suit Combination 1

- K3 opposite 6710QA Do you finesse for the 10? Why/Not?
- Absent information the finesse is worth 50%.
- If we are looking for the J, then we can win when the J is singleton, doubleton or Jxx in either hand.
- Combining those chances results in $2.4+16+36=54.4 \%$ so cashing tops is better.

What Information would make you change your play?

- Count of the hand \rightarrow split known
- \# Tricks needed from this suit
- Avoid having DANGER HAND on lead
- Can ruff out the suit

Suit Combination 2

- AJ975 -- 6810K - You play the K. LHO plays the 2 RHO the 3 . You play the 6 to dummy. LHO plays the 4. Finesse or drop?
- Any 2-2 break is 40% while any 3-1 break is 50\%.
$-2-2$ has 6 cases. 3-1 has 8 . So the specific case for 3-1 is less likely (absent additional information).
- The Qxx w/ LHO is 6.21\%. The Qx with RHO is 6.78\%.
- The ratio 6.78/13 = 52.2\%.
- Vacant spaces says LHO has 11 while RHO has 12 before declarer's choice. $12 / 23=52.2 \%$ the Q is with RHO.

What Information would make you change your play?

Suit Combination 3

- AQ97 opposite 810K - You play the 10 to the Q and the 7 to the K, RHO playing 2,4. LHO playing 3, 5. Now you continue the 8 and LHO plays the 6. Finesse or drop?
- You have seen 3 insignificant cards from LHO and 2 from RHO.
- That leaves 10 spaces for LHO and 11 for RHO.
- Therefore the probability that the J is with LHO is $11 /(10+11)=52.4 \%$. DROP

What Information would make you change your play?

Suit Combination 4

- AJ1074 opposite 52 - Goal: 3 tricks
- We are missing the KQ9863
- From the chart, 3-3 happens 36% of the time and $4-2$ happens 48% of the time.
- Missing 6 cards there are $2^{6}=64$ total cases.
- 6 cards taken 3 at a time counts to 20
- 6 cards take 2 (or four) at a time counts to 30
- Any 3-3 means we win 3 tricks. Any 1-5 or 0-6 and we fail. Ignore these.
- 4-2/2-4 is where we can gain advantage. A finesse helps only when KQ63-89 is the distribution (One Case), and Hx-Hxxx (4 Cases).
- Playing small to the A and SMALL from length works for the 8 cases where Hxxx - Hx / Hx - Hxxx plus the 2 cases KQ-9863 or 9863-KQ. 10 Cases
- Ace then small is better a priori than the $1^{\text {st }}$ round finesse.

What Information would make you change your play?

Suit Combination 5

- AKQ74 opposite 52 (need 4 tricks; Need 5 tricks)
- Needing 5 tricks, we play top down, for a 36\% chance (3-3 split).
- Needing 4 tricks we can do better. If we duck the first trick we will get 4 tricks if the suit splits 3-3 (36\%) or 4-2/2-4 (48\%). This improves our chances to 84%. Much better than playing the suit top down (remember we have no outside entry).

What Information would make you change your play?

Suit Split Probability

Richard Pavlicek Bridge Site: http://www.rpbridge. net/

Case: Missing 6 cards including the Q

Best way to answer the question "WHY??"

Now the fun starts!

\#	A	B	C	D	West	East	Ways	Ratio	Percent
1	\square	\checkmark	\square	\square	Qxxxxx	-	1	24	0.75
2	\square	\checkmark	\square	\square	Qxxxx	x	5	195	6.06
3	\square	\checkmark	\square	\square	Qxxx	xx	10	520	16.15
4	\checkmark	\square	\checkmark	\square	Qxx	xxx	10	572	17.76
5	\checkmark	\square	\checkmark	\checkmark	Qx	xxxx	5	260	8.07
6	\checkmark	\square	\checkmark	\checkmark	Q	xxxxx	1	39	1.21
7	\square	\square	\checkmark	\checkmark	xxxxx	Q	1	39	1.21
8	\square	\square	\checkmark	∇	xxxx	Qx	5	260	8.07
9	\square	\square	\square	\square	xxx	Qxx	10	572	17.76
10	\square	\square	\square	\square	xx	Qxxx	10	520	16.15
11	\square	\square	\square	\square	x	Qxxxx	5	195	6.06
12	\square	\square	\square	\square	-	Qxxxxx	1	24	0.75
Goal to win						Totals	64	3220	100.00
A	Q, Qx, Qxx onside					3	16	871	27.05
B	Ruff the 4th Club					3	16	739	22.95
C	Play off 3 rounds of Clubs					6	32	1742	54.10
D	Q drops in 2 rounds					4	12	598	18.57

Combining Chances

- PAJ1097 opposite 543
- What is the probability you can score 4 tricks?
- p Both Φ A\&K are onside: 24\%
- p Honors are split

52\%

- p Both honors are on your right

24\%
P Success $=24 \%+52 \%=76 \%$

- We Need: Finesse in Suit A, and if that fails a 3-3 break in suit B. What is the probability we make our contract?
- 50% Finesse wins + 50\% Finesse loses X (36\% 3-3 split) $=68 \%$
$-\mathbf{P}_{1 \text {-success }}+\mathbf{P}_{1 \text {-fail }}\left(\mathbf{P}_{2 \text {-Success }}\right)$
- Notice that independent plays (NOT finesses) chances ADD.
- Requiring 2 or more finesses multiplies fractions.

Analyze $1^{\text {st }}-$ Plan $2^{\text {nd }}$

The Whole Bridge Hand

- Use ALL your information - Bidding \& Play
- Start with a flexible picture of declarer/opponent
- Count hand winners and losers ("off the top") and SLOW LOSERS
- Count entries
- Count stoppers in threat suits.
- Count HCP - Your total and their total
- Combine your chances - Source of Tricks/Trick Packets
- Avoid the DANGER HAND. Assume perfect defense.
- Modify plan as you learn - Show-outs are GOLD

Use All Information
Common Inferences

- Opening bids show 12 HCP + and 5+Cards in a Major.
- 1 NT is typically 15-17.
- Weak 2 for 7-8 HCP and 6 cards
- a 3-bid less (~6) and 6-7 cards

An INFERENCE is what we judge
INFORMATION is what we see and know. (Show outs are INFORMATION)

Tips

Combining Chances (Mutually Exclusive events)

- Plan for failure - Stay ALIVE.
- Find chances that create options
- Cash winners in your long side suit (drop honors)
- Finesse long suits into safe hands when necessary.
- Avoid finesses completely if possible
- Leave short suits (no extra chances) until the end.

Steve's Tips:

- Always choose the plan with the best probability
- Find a good plan? LOOK AGAIN. FIND A BETTER ONE
- When faced with equal choices, choose the option that allows you to STAY ALIVE longest (Take more chances)
- Any Chance is better than NO Chance
- NEVER take a PRACTICE FINESSE.

A Simple Hand?

Contract: 4甲 , Opponents pass throughout

Analysis:
Winners: 5 Losers: 3 Fast, 1 Slow
Entries: W3 and E2
Stoppers: ${ }^{2}$ 2,
Source of Tricks: \$(3), \$(2)

Improving Your Plan

Contract 6『, no opposing bidding

- AQ
- AKJ72
- AQ
\$ J456

N	- 98
W E	- Q10654
S	- J65
Lead 3	\& AK10

ANAYLSIS:
Winners: 9 Losers: 0 Fast, 3 Slow
Entries: W5 and E3
Stoppers: 14 1 2\&
Source of Tricks: (3); (2)
Plan 6

Improving your plan 1

- AQ
- AKJ72
- AQ
\$ J 456

N	¢ 98
W E	- Q10654
S	- J65
Lead ${ }^{\text {P }}$	\$ AK10

A Novice (or finesse-aholic)

- sees 3 finesses, draw trumps in 2-4 rounds and begin.
- 3 Finesses here are independent (different suits, different players) so the odds of all 3 are $1 / 2 \times 1 / 2 \times 1 / 2$ or 12.5 \%.
- They need only 2 of the 3 finesses. How do you calculate the probability? Think: 2 winning finesses is the same case as one losing finesse or $\mathbf{5 0 \%}$.

Improving your plan 2

Intermediate Player:

- After pulling trumps if the finesse works and they split 3-3, they can pitch a losing on the long $\$$
Combining chances that way means:
- 50% finesse $\times 36 \% 3-3$ - split $=18 \%$
- 50% Finesse x 82% remaining $=41 \%$ or
- TOTAL CHANCE:

59\%
a useful improvement.

Improving your plan 3

- AQ
 - AKJ72
 - AQ
 \& J456

Expert Player:

- Cash the AK
- \% Time North has 0, 1, 2 \&
- Finesse ($50 \% \times 56 \%$)
- TOTAL

$$
\begin{aligned}
& =18 \%+ \\
& =26 \% \quad(\text { NOT Q, Qx) } \\
& =28 \% \\
& 72+\%
\end{aligned}
$$

- Look deeper! Treat the hand as "one of 2 finesses": Finesse $\$$. If win, cash tops. If no $\$$, finesse away on $3^{\text {rd }} \downarrow$. Likewise if $\$$ finesse loses, we need only the finesse to win (Pitch the losing on the $\boldsymbol{\$}$) - a 75% play.

Bonus Problem

69, No opposition bids. What is the likelihood of success? Trumps split 2-1

Which finesse do you take first? Second? Why?

> ANSWER: Take NO Finesses. Draw 2 rounds of Trump and 2 rounds of \bullet. Then play off AKJ in that order. No matter who wins they have to either give you a free finesse or a ruff sluff - either way we lose only 1 trick.

> PROBABILITY OF SUCCESS: 100\%

See the Ending...

Either \mathbf{N} or \mathbf{S} must lead and give us the rest of the tricks. You play like an expert!
ANSWER: Take NO Finesses. Draw 3 rounds of Trump and 2 rounds of \bullet. Then play off AKJ in that order. No matter who wins they have to either give you a free $\$$ finesse or a ruff sluff - either way we lose only 1 trick.

PROBABILITY OF SUCCESS: 100\%

Other Uses for "p"

- When to bid Game, Small Slam, and Grand Slam
- The likelihood of success must match or exceed breakeven
- Breakeven - what you win equals what you lose.

Game, Slam \& Grand Odds

	Games		Small Slam		Grand Slam			
Type	V	NV	V	NV	V	NV	V	NV
Score+	620	420	1430	980	2210	1510	2210	1510
Score-	-100	-50	-100	-50	-100	-50	-100	-50
Not Bid	170	170	680	480	1460	1010	710	510
Win	+450	+250	750	500	750	500	1500	1000
Lose	-240	-190	750	500	1530	1030	-780	-530
IMPs W	10	6	13	11	13	11	17	14
IMPs L	-6	-5	-13	-11	-17	-14	-13	-11
Break Even	38%	45%	50%	50%	57%	56%	$43 \%^{*}$	$44 \%^{*}$

*If opponents bid game, then bidding a Grand Slam is Poor. With 12 tricks, a slam gains $+11 \mathrm{NV} \&+13 \mathrm{~V}$ IMPS, the grand loses -11NV Imps and -13V, swinging -22NV \& -26V Imps. Avoid grand slams when they only bid game. Need 14 tricks.

Useful a priori \%:

- Have FUN playing BRIDGE $\frac{\%}{100}$
- Need 1 of 2 finesses (same hand) 76
- Missing cards split 3-2 68
- Missing cards split 4-3 62
- Q drops in 3 rounds when holding 7 cards 54.4
- Pure finesse 50
- Need 2 finesses of 3 available 50
- Q drops in 3 rounds when holding 6 cards 37
- Suit splits 3-3 36
- Need 3 finesses of 4 available. 31
- Need 2 finesse of 2 available 25
- Need finesse \& 3-3 split 18
- Need 3 finesses 12.5

References

1. E Kantar, Take All Your Chances (2009) Masterpoint Press
2. Richard Pavlicek Bridge Site: http://www.rpbridge.net/
3. Suit Play: http://home.planet.nl/~narcis45/suitplay/
4. Andrew Gumperz, "Gambling at Bridge Part V - Grand Slams" http://www.bridgewinners.com
5. H. W. Kelsey \& M. I. Glauert, Bridge Odds for Practical Players (1980) Orion Publishing
6. E Rodwell \& M Horton, The Rodwell Files, Secrets of a Bridge Champion (2011) Master Point Press
7. Jeff Ruben, Expert Bridge Simplified, Arithmetic Shortcust for Declarer, (2009) Bridge World Books.

Steve Moese
moesefamily@aol.com

See you at the tables!

THANK YOU FOR YOUR KIND ATTENTION!

